


Table of Contents

Disclaimer 2
Document 3
Introduction 4
Project Scope 5
Executive Summary 6
Code Quality 6
Documentation 8
Use of Dependencies 9
AS-IS Overview 10
Code Flow Diagram - PulseDAO 14
Code Flow Diagram - Slither Results Log 15
Audit Findings 24
Conclusion 28
Note For Contract Users 28
Our Methodology 31
Disclaimers 33

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of
PulseDAO

Platform PulseChain/ Solidity

File TokenVault.sol

MD5 hash 7ff1741fd3562e93381d101d151f2d05

SHA256 hash 5f8b7ff44e0c7fe0cfcaeb940fc2ab5e75e4be5252ec4a4b7ac603c019
2d1be5

File PlsVault.sol

MD5 hash d1ee81f2a85a5a632587bab372fdd620

SHA256 hash a06e4d2aa40fcdc2345044a6fc9c04d5a76e2c8fdaaf8cbc1ef0be398
c1d3eef

Date 31/10/2023

info@rdauditors.com Page No : 3



Introduction

RD Auditors (Consultant) were contracted by PulseDAO (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

represents the findings of the security assessment of the customer’s smart

contract and its code review conducted between 26th - 31st October 2023.

This contract consists of two files.

info@rdauditors.com Page No : 4



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 5



Executive Summary
According to the assessment, the customer’s solidity smart contract is now
Poorly-Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 5

Critical 5

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 6



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The PulseDAO team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Overall, the code is almost commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 7



Documentation

We were given the PulseDAO code as a Github link:

https://github.com/decentralizeX/PulseDAO/blob/main/contracts/pulse-ecosys

tem/tokenVault.sol

https://github.com/decentralizeX/PulseDAO/blob/main/contracts/pulse-ecosys

tem/plsVault.sol

The hash of that file is mentioned in the table. As mentioned above, it's

recommended to write comments on smart contract code, so anyone can

quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

info@rdauditors.com Page No : 8

https://github.com/decentralizeX/PulseDAO/blob/main/contracts/pulse-ecosystem/tokenVault.sol
https://github.com/decentralizeX/PulseDAO/blob/main/contracts/pulse-ecosystem/tokenVault.sol
https://github.com/decentralizeX/PulseDAO/blob/main/contracts/pulse-ecosystem/plsVault.sol
https://github.com/decentralizeX/PulseDAO/blob/main/contracts/pulse-ecosystem/plsVault.sol


Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 9



AS-IS Overview

PulseDAO .sol

File And Function Level Report

Contract: TokenVault

Inherit: ReentrancyGuard

Import: IERC20, SafeERC20, ReentrancyGuard, IGovernor,

IMasterchef, IacPool

Observation: Not Passed

Test Report: Not Passed

Sl. Function Type Observation Test Report Conclusion Score

1 deposit write Passed All Passed No Issue Passed

2 harvest write

3 withdraw write Passed All Passed No Issue Passed

4 selfHarvest write Passed All Passed No Issue Passed

5 collectCommi
ssion

write Passed All Passed No Issue Passed

6 collectCommi
issionAuto

write Passed All Passed No Issue Passed

7 updateFees write Not Passed Not Passed Need to
check

Not
Passed

8 updateTreasur
y

write Not Passed Not Passed Need to
check

Not
Passed

9 WithdrawStuc
kTokens

write Not Passed Not Passed Need to
check

Not
Passed

info@rdauditors.com Page No : 10



10 setMasterchef
Address

write Passed All Passed No Issue Passed

11 SetPoolPayou
t

write Passed All Passed No Issue Passed

12 UpdateSettin
gs

write Passed All Passed No Issue Passed

13 ViewStakeEar
nings

read Passed All Passed No Issue Passed

14 ViewUserTotal
Earnings

read Passed All Passed No Issue Passed

15 multicall read Passed All Passed No Issue Passed

16 CalculateTotal
PendingDTXR
ewards

read Passed All Passed No Issue Passed

17 ViewPoolPayo
ut

read Passed All Passed No Issue Passed

18 ViewPoolMinS
erve

read Passed All Passed No Issue Passed

19 getNrOfStake
s

read Passed All Passed No Issue Passed

20 PublicBalance
Of

read Passed All Passed No Issue Passed

21 VirtualAccDtx
PerShare

write Passed All Passed No Issue Passed

22 PayFee write Passed All Passed No Issue Passed

Contract: PlsVault

Inherit: ReentrancyGuard

Import: IERC20, SafeERC20, ReentrancyGuard, IGovernor,

IMasterchef ,IacPool

Observation: Passed

Test Report: Passed

info@rdauditors.com Page No : 11



Sl. Function Type Observation Test Report Conclusion Score

1 deposit write Passed All Passed No Issue Passed

2 harvest write Passed All Passed No Issue Passed

3 withdraw write Passed All Passed No Issue Passed

4 selfHarvest write Passed All Passed No Issue Passed

5 emergencyWith
draw

write Passed All Passed No Issue Passed

6 emergencyWith
drawAll

write Passed All Passed No Issue Passed

7 CollectCommiss
sionAuto

write Passed All Passed No Issue Passed

8 UpdateFee write Not Passed Not Passed Need to
check

Not
Passed

9 UpdateTreasury write Not Passed Not Passed Need to
check

Not
Passed

10 withdrawStuckT
okens

write Not Passed Not Passed Need to
check

Not
Passed

11 SetMasterchefA
ddress

write Passed All Passed No Issue Passed

12 setPoolPayout write Passed All Passed No Issue Passed

13 UpdateSettings write Passed All Passed No Issue Passed

14 ViewStakeEarni
ngs

read Passed All Passed No Issue Passed

15 ViewUserTotalEa
rnings

read Passed All Passed No Issue Passed

16 multiCall read Passed All Passed No Issue Passed

17 CalculateTotalPe
ndingDTXRewar
ds

read Passed All Passed No Issue Passed

18 ViewPoolPayout read Passed All Passed No Issue Passed

19 ViewPoolMinSer
ve

read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12



20 getNrOfStakes read Passed All Passed No Issue Passed

21 publicBalanceO
f

read Passed All Passed No Issue Passed

22 VirtualACCDtxP
erShare

read Passed All Passed No Issue Passed

23 PayFee write Passed All Passed No Issue Passed

24 _removeStake write Passed All Passed No Issue Passed

25 _harvest write Passed All Passed No Issue Passed

info@rdauditors.com Page No : 13



Code Flow Diagram - PulseDAO

info@rdauditors.com Page No : 14



Code Flow Diagram - Slither Results Log

info@rdauditors.com Page No : 15



info@rdauditors.com Page No : 16



info@rdauditors.com Page No : 17



info@rdauditors.com Page No : 18



info@rdauditors.com Page No : 19



Solidity Static Analysis

info@rdauditors.com Page No : 20



info@rdauditors.com Page No : 21



info@rdauditors.com Page No : 22



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 23



Audit Findings

Critical:

TokenVault

Indexing can not be blank . It has some syntax issues and doesn’t follow the

correct pattern for defining or initializing values for such data structures.

You should use a data structure such as a struct and an array or mapping to

store the values.

info@rdauditors.com Page No : 24



2.

Harvest() is set to public as any user can call this function and the

“accDtxPerShare” keeps increasing.

3.

“updateFees()”,”updateTreasury()”,”withdrawStuckTokens()” can be called by

anyone.

info@rdauditors.com Page No : 25



PlsVault

4.

Indexing can not be blank . It has some syntax issues and doesn’t follow the

correct pattern for defining or initializing values for such data structures.

You should use a data structure such as a struct and an array or mapping to

store the values.

info@rdauditors.com Page No : 26



5.

“updateFees()”,”updateTreasury()”,”withdrawStuckTokens()” can be called by

anyone.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

info@rdauditors.com Page No : 27



Conclusion

We were given a contract file and have used all possible tests based on the

given object. We have some critical issues so it is not ready for mainnet

deployment. We have used all the latest static tools and manual observations

to cover maximum possible test cases to scan everything.

The security state of the reviewed contract is “Poorly-Secured”.

info@rdauditors.com Page No : 28



Note For Contract Users

There are several administrator functions. Those can be called by the

administrator's wallet only. So, if the administrator's wallet is compromised,

then it carries the risk of the contract becoming vulnerable.

SetMasterchefAddress: This function means to update the MasterChef

contract address and the associated pool ID, and it enforces access control to

ensure that only authorized entities can make these changes. This is a crucial

feature for allowing the TokenVault contract to adapt to different MasterChef

contracts or pools as needed during its operation.

UpdateSettings: The UpdateSettings function allows an external entity with

the “decentralizedVoting” permission to update a setting in the contract

called defaultDirectPayout

SetPoolPayout: The SetPoolPayout function allows an external entity with the

"decentralizedVoting" permission to set or update the payout settings for a

specific pool identified by its address.

administrator has full control over the smart contract. Thus, technical auditing

does not guarantee the project's ethical side.

Dependent contracts such as MasterChef, are not within the scope of this

audit.

info@rdauditors.com Page No : 29



Please do your due diligence before investing. Our audit report is never an

investment advice.

info@rdauditors.com Page No : 30



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 31



Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 32



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 33




